SYNTHESIS OF 3-(\alpha-NAPHTHYLMETHYL)-4-HYDROXYCOUMARIN AND ITS DERIVATIVES

L. P. Zalukaev and M. P. Aleksyuk

Khimiya geterotsiklicheskikh soedinenii, Vol. 1, No. 1, pp. 139-140, 1965

 $3-(\alpha-Naphthylmethyl)-4-hydroxycoumarin$ and a series of derivatives are prepared by condensing phenols with diethyl α -naphthylmethylmalonate under the influence of heat.

Condensation of diethyl α -naphthylmethylmalonate with phenol, p-cresol, o-cresol, hydroquinone monomethyl ether, and guaiacol by the method of [1] under the influence of heat gives, correspondingly:

- $3-(\alpha-naphthylmethyl)-4-hydroxycoumarin (I),$
- $3-(\alpha-naphthylmethyl)-4-hydroxy-6-methylcoumarin (II),$
- $3-(\alpha-naphthylmethyl)-4-hydroxy-8-methylcoumarin (III),$
- $3-(\alpha-naphthylmethyl)-4-hydroxy-6-methoxycoumarin (IV),$
- $3-(\alpha-naphthylniethyl)-4-hydroxy-8-methoxycoumarin (V).$

The table below gives the condensation conditions and properties of the resulting compounds.

Com- pound	M.p., °C	ing temp-de erature, ti	Con- densing	Yield,	Empirical formula	Found, %		Calculated, %	
			time, hrs			С	н	C	н
I II IV V	244 —245 263.5—264 258 —259 244 —244,5 233.5—234	285—290 280—282 280—285 280—281 280—282	6,5 7,5 6,5 7	70 73 54 22 37	$\begin{array}{c} C_{20}H_{14}O_3 \\ C_{21}H_{16}O_3 \\ C_{21}H_{16}O_3 \\ C_{21}H_{16}O_4 \\ C_{21}H_{16}O_4 \end{array}$	79.32 79.64 79.80 75.90 75.80	4.70 5,26 5.36 5.24 5.10	79.45 79.72 79.72 75.88 75.88	4.67 5.11 5.11 4.86 4.86

3-(α-Naphthylmethyl)-4-hydroxycoumarin and its derivatives

EXPERIMENTAL

1-Chloromethylnaphthalene is obtained by chloromethylating naphthalene in the usual way [2], b.p. 125-132° (2 mm).

Diethyl α -naphthylmethylmalonate (VI) is synthesized by alkylating ethyl malonate with 1-chloromethylnaphthalene. It forms an oil which crystallizes on standing, b.p. 215-217° (5 mm), 191-193° (1 mm), yield 60%.

 $3-(\alpha-\text{Naphthylmethyl})-4-\text{hydroxycoumarins}$ (I-V). Condensation was effected in the apparatus previously described [3]. 0.05 mole VI and 0.1 mole of the appropriate phenol were placed in a 50 ml flask. Alcohol usually began to distill off when the temperature at which condensation occurred was reached. In 2-2.5 hr the temperature was raised to that indicated in the table. Compounds I-V were purified by reprecipitation from NaOH using HCl, and recrystallized from acetic acid.

REFERENCES

- 1. C. Mentzer, P. Vercier, Mon. Chem., 88, 264, 1957.
- 2. Sint. org. prep., 3, 481, 1952.
- 3. L. P. Zalukaev, M. P. Aleksyuk, ZhOKh [In press].

16 October 1964

Voronezh State University Voronezh Institute of Technology